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Abstract

This research uses a two-stage maximal covering location problem (MCLP) model to develop Inter continental ballistic
missile (ICBM) maintenance schedules for the US Air Force. Solutions are compared to actual missile maintenance activities
accomplished at F. E. Warren Air Force Base (AFB), Wyoming in May 2005. Sensitivity analysis is performed to determine the
impact of altering security response times and the number of security patrol areas on the quality of daily maintenance schedules
and personnel usage. Results indicate marked improvement over traditional Air Force scheduling methods. In addition sensitivity
analysis identifies the levels at which the quality and quantity of maintenance performance is impacted.
Published by Elsevier Ltd.
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1. Introduction

Since the early 1960s, Intercontinental Ballistic
Missile’s (ICBMs) have served as the long-range at-
tack segment of the US nuclear deterrent force. The
Minuteman III weapon system is the only remaining
US Air Force ICBM system. The Air Force’s 500 Min-
uteman III missiles are dispersed among three Air Force
bases: 200 missiles at Malmstrom AFB, Montana; 150
missiles at Minot AFB, North Dakota; and 150 missiles
at F. E. Warren AFB, Wyoming. ICBMs are stored in
unmanned, hardened, underground structures known
as launch facilities. A separate missile alert facility
serves as the center of assigned security patrol areas,
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the staging point for security forces teams deployed
to the missile complex, and as an area away from the
main base where maintenance personnel can remain
overnight. One missile alert facility controls 10 launch
facilities and makes up a flight; five flights make up a
squadron. F. E. Warren Air force base (AFB) which is
the focus for this study, has three Minuteman III missile
squadrons, each responsible for 50 ICBMs.

An ordered priority system, from 1 to 9, is used to
dictate precedence for maintenance activities performed
for ICBMs [1]. Priority 1 maintenance activities are the
most crucial, often requiring immediate repair or re-
placement of critical equipment to maintain the weapon
system, while priority 9 activities are generally minor
repairs that have no impact on the missile operation.
This priority system determines which launch facilities
will be scheduled for maintenance, given a constrained
number of maintenance teams and security personnel.
If a maintenance team requires direct access to the
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missile or its classified components, the team must be
accompanied by a security escort team (SET), which
protects the launch facility while maintenance is being
accomplished. Additional security teams monitor activ-
ity within a designated security patrol area and stand
ready to respond to potentially hostile activities within
the patrol area.

Maintenance of the Minuteman III weapon system
requires maintenance and security teams travel to one or
more of 150 launch facilities, all of which are geograph-
ically isolated from major population centers. Travel
time from F. E. Warren AFB, the main support base, to
the launch facilities can range from less than 25min to
over 2.5h. Teams are limited to a 16-h timeline, which
begins as soon as a team arrives at the F. E. Warren
AFB work center to make travel preparations, and ends
after all maintenance actions are completed, or once the
team arrives at one of the 15 missile alert facilities dis-
persed throughout the 12,600 square-mile missile com-
plex. Each missile alert facility serves as the hub of one
security patrol area, allowing for up to 15 total security
patrol areas. At the time of this research, the available
missile security personnel could support two security
patrol areas per day, which had a maximum coverage ra-
dius of 60-min travel time from the missile alert facility.
Missile alert facilities have already been built, so their
locations are fixed. However, the supported security pa-
trol areas can shift between missile alert facilities daily,
depending on which area(s) of the missile complex the
launch facility maintenance activities are needed. All
launch facility maintenance activities that require access
to the missile must fall within at least one security pa-
trol area, or maintenance cannot be performed. As such,
missile maintenance schedulers must try to geographi-
cally cluster maintenance activities within these two se-
curity patrol areas to forego maintenance cancellations.
Previous military research on the topic of missile main-
tenance scheduling has indicated that this problem can
be well defined as a facility location problem [2].

The terrorist acts of September 11, 2001 raised con-
cerns as to whether mandated levels of security person-
nel used for maintenance dispatches were sufficient to
protect all ICBMs from damage, destruction, or theft.
These concerns resulted in major changes to Department
of Defense and Air Force security instructions, which
mandated the presence of additional security person-
nel during weapon system maintenance activities within
the missile complex. Additionally, security changes de-
creased the security forces’ response times to pene-
trated missile launch facilities. With a finite number
of security personnel available each day, only a lim-
ited number of maintenance activities can be performed.

Missile maintenance schedulers must cope with these
new security personnel constraints to maintain the high-
est missile alert rate possible, while still accomplish-
ing the lower-priority tasks that are necessary to keep
the missile infrastructure intact and support systems
functioning.

This research seeks to answer the following question:
how can ICBM maintenance scheduling methods be en-
hanced to compensate for given security requirements
while sustaining prescribed readiness levels? Sensitiv-
ity analysis examines what effects manipulating various
missile security requirements have on the scheduling
of daily missile maintenance activities. This research
addresses the operating environment as it existed dur-
ing the time period that this study was performed,
and is most concerned with security forces manpower
limitations and security requirements that detrimen-
tally impact the maintenance organization’s ability to
accomplish maintenance activities.

2. Literature review

2.1. Previous military research

Several attempts have been made to enhance the mis-
sile maintenance and security forces scheduling prac-
tices by the US Air Force. In 1999, Seaberg [3] pro-
posed to geographically cluster all F. E. Warren AFB
missile maintenance activities requiring launch facility
penetration within designated security “security patrol
areas,” or patrol areas that are centered upon two of
the 15 missile alert facilities. Dawson [2] developed
a Microsoft Excel�-based optimization tool that estab-
lished security patrol area focal points at 233 locations
within the missile complex vs. the normal 15 Minute-
man III missile alert facilities proposed by Seaberg.
Dawson’s model produced results that closely paralleled
Seaberg’s [4] security patrol area concept, but offered
security forces schedulers the option to place patrolling
security teams based on several different objectives:
maximizing the number of launch facilities covered by
the security patrol area; minimizing total security team
travel time; or minimizing longest travel time. This re-
search focuses more on the maintenance scheduling as-
pect of missile maintenance and is the first effort of its
kind.

2.2. Location modeling

One of the first covering models, the maximal cover-
ing location problem (MCLP) was first formulated by
Church and ReVelle [5] in 1974. This model evolved
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from the location set covering problem (LSCP) [6].
However, unlike the LSCP, which covered all demand
nodes within a maximum distance of a minimal num-
ber of facilities, the MCLP model considered that fi-
nancial constraints could limit the number of facilities
that would be placed. Since the development of the
first MCLP, many variations of the original model have
been constructed. The following examples of expanded
MCLP models are by no means all inclusive, as numer-
ous studies that have been performed.

In 1979, Church and Meadows “generalized the
search for on optimal solution to a dominant set of
points NIPS (Network Interest Point Set) which, ac-
cording to Berman, includes in addition to the nodes
all points that are T units of distance away from any
demand point” [7]. A two-level hierarchical cover-
ing location problem (HCLP) was developed in 1982
by Moore and ReVelle [8]. This particular problem
looked at locating facilities that provided different lev-
els of service to the demand nodes. Espejo et al. [9]
expanded on the HCLP model, developing solutions
using dual-based heuristics; specifically, a subgradient-
based heuristic incorporating a Lagrangean-surrogate
relaxation, which reduced to a 0–1 knapsack problem.
Megiddo et al. [10] considered locating new facilities
within a pre-existing network of established facilities,
with the goal of “drawing” a maximum number of cus-
tomers. In addition, Berman [7] studied the relationship
between p-maximal cover problems and partial center
problems on networks. This study paved the way for
the creation of the generalized maximal covering lo-
cation problem (GMCLP), developed by Berman and
Krass in 2002. Unlike the original MCLP, this model
did not consider demand coverage as binary; instead,
it assumed “that the coverage level is a decreasing step
function of the distance to the closest facility. . . ” [11].
ReVelle et al. considered an extension of the MCLP
that not only required demand nodes within a certain
distance to be covered by a facility, but also required
that the facilities themselves be covered by other facili-
ties within a different coverage radius. This redundancy
of demand and facility coverage was applied to emer-
gency services, where more than one facility may be
required to cover overall network demand [12].

Additional studies closely parallel this specific re-
search. Ma integrated scheduling and MCLP method-
ologies to determine police patrol areas for the Dallas
Police Department. The objective of the Police Patrol
Area Covering problem (PPAC) was to “maximize the
number of incidents served or ‘covered’ within a desired
response time” [13]. Also, the MCLP and set cover-
ing models have been applied to similar urban location

problems [14,15]. Additional vehicle scheduling prob-
lems with locational aspects have been studied more
recently [16–18], and the sensitivity of operating in a
nuclear environment can be seen in [19–21]. In addition,
problems for geographically dispersed services [22,23]
and for developing facility networks across large ar-
eas [24–27] are the focus of recent research. However,
instances of scheduling for field service maintenance
technicians over large geographic areas have only rarely
been studied [28,29], and no known research uses loca-
tion methods such as the MCLP for scheduling mainte-
nance technicians over large geographic areas.

3. Materials and methods

In this research, maintenance scheduling activi-
ties at F. E. Warren AFB missile launch facilities are
improved using the maximal covering facility problem
(MCLP) methodology to ensure that a weighted sum
of scheduled launch facility maintenance activities is
maximized while meeting security constraints. Actual
data collected from F. E. Warren AFB were used to
reconstruct the 26 daily maintenance schedules for
May 2005. These actual schedules served as a baseline
of comparison to the research model outputs. Addition-
ally, the problem is to assign jobs at different locations
to a group of maintenance technicians with different
job skills; similar to research by Xu [28].

3.1. Modeling approach

Based on examination of the various facility location
methods found in the literature, the MCLP methodol-
ogy was used as the basis for the research model.
Microsoft Excel� with the Premium Solver� plug-in
was chosen as the optimization software to create the
model, due to the availability and user-friendly nature
of the software. The technique used to solve the loca-
tion problem is highly dependent on several factors,
which are specific to the individual problem. The type
of objective function, decision variables, constraints,
problem complexity, needs of the end user, and com-
putational time required to solve the problem were all
factors considered when developing this tool to produce
problem solutions. Often in combinatorial optimization,
heuristics are best to use when resources are constrained
and they allow for optimal, or near optimal, solutions
with reduced processing time. Over the course of devel-
oping a research model, it was found that a two-stage
heuristic, each stage utilizing optimization techniques,
was the most reasonable approach to produce the fi-
nal model solutions for this problem. The existence of
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a complicated objective and the relatively large problem
size made the choice of a two-stage model desirable.
Extensive testing, the use of optimization techniques in
both stages, and comparisons to field results give the
researchers a high level of confidence that the solutions
from the two-stage model are near optimal. Due to the
heuristic approach, optimality cannot be guaranteed,
but the approach achieves a major improvement over
current scheduling techniques.

Specific Air Force guidance was used to develop the
objective function of the research model. Air Force reg-
ulations [1] state that:

All maintenance actions and management efforts
must be directed towards maximum availability of
ICBMs in support of the United States Strategic
Command requirements directives. All maintenance
supervisors are mandated to use all resources in the
most effective and efficient way with emphasis on
the safety and welfare of the technician [1] .

To successfully fulfill this objective, maintenance ef-
forts must focus on completing those maintenance ac-
tivities that are crucial to keeping a maximum number
of ICBMs on full alert status, given manpower, equip-
ment, and environmental constraints. Regulations [1]
provide further direction for which maintenance activi-
ties are most crucial to sustaining the “maximum avail-
ability of ICBMs,” and provide a detailed breakdown
of maintenance activity prioritization.

At the time of this study, US Air Force missile main-
tenance scheduling personnel built the daily schedule
manually, one day prior to the day maintenance tasks
were performed. A long-term maintenance forecast
developed by schedulers dictates which life-extension
programs, weapon system upgrades, and depot-level
maintenance activities must be performed at the LFs.
These programmed activities are combined with other
outstanding maintenance work orders and assigned to
the schedule according to the priority system dictated
by regulation to form the daily schedule.

To quantify how effective the maintenance sched-
ulers were at meeting the published objective with the
26 daily baseline schedules, a weighting factor was cre-
ated for each type of maintenance activity. Due to the
large variety of maintenance tasks that are performed,
all tasks were grouped into 18 separate categories to
create the weighting system for this research. Cate-
gories were based on the published priority designa-
tion [1], extent of coordination efforts required, mission
impact, level of security presence required, and practi-
cality of completion. A description of the categories is
included in Appendix A. Weights were assigned to each

category based on an exponential distribution of the 18
categories. An exponential distribution was chosen be-
cause of its ability to assign a greater weight and higher
degree of separation to the maintenance tasks most criti-
cal to maximizing the quantity of ICBMs on alert, while
gradually leveling the impact of the weights as the prob-
ability distribution frequency (PDF) curve approaches
the least critical categories. After preliminary experi-
mentation, a � value of 0.25, multiplied by a factor of
1000, produced category weights that provided a suffi-
cient level of separation between high and low-priority
categories, without making the weights of the last sev-
eral categories equal. After the weights were applied to
the maintenance activities in the 18 maintenance cat-
egories, a total weighted value of the maintenance re-
quired for each candidate launch facility was computed
for each of the 26 daily baseline schedules. To fulfill
the model objective and measure the overall schedul-
ing effectiveness, the research model aims to maximize
this weighted sum of maintenance activities at launch
facilities included in the daily schedule.

3.2. Calculations

The problem of enhancing current missile mainte-
nance scheduling processes is modeled as a two-stage
MCLP.

3.2.1. Model stage one formulations
The notation used to define the model in stage one

are as follows:

L, the set containing 150 launch facilities (A02,

A03, . . . , O11);
M, the set containing 15 missile alert facilities

(A01, B01, . . . , O01);
P, maximum number of missile alert facilities (secu-

rity patrol area centers);
R, maximum security patrol area response time;
i, the index of candidate missile alert facilities;
j, the index of candidate launch facilities;

w j , weight of maintenance activity at launch facility j;
x j , binary condition indicating whether or not launch

facility j is covered;
ai j , binary condition indicating whether or not the re-

sponse time between missile alert facility i and
launch facility j falls within maximum specified
response time;

ri j , the response time between missile alert facility i
and launch facility j;

Yi , binary condition indicating whether or not missile
alert facility i is selected as the security patrol area
center.
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The MCLP mathematical formulation for stage one is
based on the original formulation developed by Church
and ReVelle [5]:

Maximize
M∑

i=1

L∑
j=1

Yiw j x j (1)

Subject to
∑
i∈M

ai j Yi �x j , j = 1, . . . , L (2)

∑
Yi � P (3)

Yi = {0, 1}, ∀i (4)

where ai j =
{

1 if ri j � R

0 otherwise
, ∀i and j (5)

x j=
{

1 if
∑

i∈M
ai j Yi �1

0 otherwise
, j=1, . . . L (6)

Yi =
⎧⎨
⎩

1 if missile alert facility i

is selected

0 otherwise

, (7)

j ∈ L , i ∈ M (8)

The objective function (1) was based on Air Force
regulations [1] and the requirement for the maxi-
mum availability of ICBMS. It maximizes the sum of
weighted demands at covered launch facilities. Con-
straint (2) ensures that launch facility j is not considered
unless it falls within the maximum response time of at
least one selected missile alert facility, i. Constraint (3)
states that no more than P missile alert facilities can
be selected as a security patrol area center. Constraint
(4) is the binary constraint placed on the decision
variables. Condition (5) assigns ai j a value of 1 if
the response time between missile alert facility i and
launch facility j is less than, or equal to, the maximum
allowable response time, R; a value of 0 is assigned if
the maximum response time is exceeded. Condition (6)
assigns x j a value of 1 if launch facility j is covered
by at least one selected missile alert facility, i, which is
a member of the set of all missile alert facilities, M; a
value of 0 is assigned if launch facility i is not covered.
Condition (7) assigns Yi a value of 1 if missile alert
facility i is chosen as the security patrol area center;
otherwise, it takes on the value 0. Condition (8) states
that launch facilities, j, are members of the set of all
launch facilities, L; likewise, missile alert facilities, i,
are members of the set of all missile alert facilities, M.

3.2.2. Model stage two formulations
Stage two utilizes the solutions from stage one to

compute the final model solution. The stage one so-
lution is specifically passed to stage two through the

determination of sets X and Y. The notations used to
define the model in stage two are as follows:

X, the solution set of launch facilities covered by the
missile alert facilities selected in stage one;

Y, the solution set of missile alert facilities selected
in stage one of the model;

i, the index of selected missile alert facilities;
j, the index of candidate launch facilities;
t, the index of maintenance/security team types

(SETS, . . . , TRN);
w j , weight of maintenance activity at launch facility j;
x j , binary condition indicating whether or not launch

facility j is selected;
ai j , binary condition indicating whether or not the re-

sponse time between missile alert facility i and
launch facility j falls within the maximum speci-
fied response time;

c jt , number of teams of type t required at launch fa-
cility j;

Ct , total number of available maintenance/security
teams, t.

The MCLP mathematical formulation for stage two
is also based on the original formulation developed by
Church and ReVelle [5]:

Maximize
X∑

j=1

w j x j (9)

Subject to
∑
i∈Y

ai j �x j , j = 1, . . . , X (10)

X∑
j=1

c jt �Ct , t = SETS, . . . , TRN (11)

x j = {0, 1}, ∀ j (12)

where x j =

⎧⎪⎨
⎪⎩

1 if launch facility j

is selected

0 otherwise

, (13)

j ∈ X, i ∈ Y (14)

The objective function (9) maximizes the sum of
weighted demands at covered launch facilities. Con-
straint (10) ensures that launch facility j is not selected
unless it falls within the maximum response time of at
least one of the two selected missile alert facilities, i.
Constraint (11) states that the sum of maintenance and
security teams t required at all selected launch facilities
must be less than, or equal to, the total number of each
maintenance and security team available, Ct . Constraint
(12) is the binary constraint placed on the decision vari-
ables. Condition (13) assigns x j a value of 1 if launch
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Fig. 1. Stage one solution set illustration.

facility j is chosen for the schedule; otherwise, it takes
on the value 0. Condition (14) states that launch facili-
ties j are members of the solution set of launch facilities
covered by the missile alert facilities selected in stage
one, X; likewise, missile alert facilities i are members
of the solution set from stage one, Y.

3.3. Generation of solutions

To generate solutions for the original model, a two-
stage process was used.

3.3.1. Model stage one solutions
In stage one, the 15 missile alert facilities served as

the decision variables, which were subject to the fol-
lowing three constraints: decision variables are binary;
the solution set must include at least one, but no more
than two missile alert facilities; and all launch facilities
considered by the objective function must fall within at
least one of the 60-min security patrol areas provided
in the solution set. Fig. 1 illustrates what a stage one
solution might look like.

The 15 large dots represent the missile alert facili-
ties that can serve as staging area for security patrol
teams. The 150 small dots represent the launch facilities
within the missile complex. Assuming that all launch
facilities have some sort of required maintenance ac-
tivity to be performed, and given the previously men-
tioned constraints, stage one selects the two missile alert

facilities, identified by a large white dot, that maximize
the weighted sum of all maintenance demands at the 150
launch facilities. All launch facilities that fall within the
security patrol areas of the stage one solution set, iden-
tified with the large black circles, make up the subset
of launch facilities from which stage two of the model
develops the final schedule. Note that the security pa-
trol areas are for illustration purposes only and do not
depict actual 60-min security response windows using
geographical distance calculations.

3.3.2. Model stage two solutions
The model selected two missile alert facilities whose

security patrol area(s) maximized the weighted sum of
maintenance activities at the candidate launch facilities.
The two missile alert facilities that made up the stage
one solution set established the security patrol area focal
points required to generate final solutions in stage two.
Stage two maximized the weighted sum of the selected
subset of launch facilities that fall within 60-min of the
stage-one security patrol area(s), given maintenance and
security personnel constraints. In other words, a subset
of launch facilities covered by the stage one security
patrol areas were picked to be on the daily schedule.
Fig. 2 illustrates what a stage two solution might look
like.

The stage-two solution provides a list of launch facil-
ities covered by the security patrol areas that maximize
the weighted sum of all required maintenance, given
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Fig. 2. Stage two solution set illustration.

the model constraints. The launch facilities that make
up the model’s final solution set are identified with the
small, black dots. The maintenance teams and security
personnel not utilized in the final model solution could
then be assigned to maintenance activities exempt from
security patrol areas, or removed from the daily sched-
ule completely.

4. Results

4.1. Model analysis

The results generated using this research model
were compared to the actual maintenance activities
performed between May 1 and May 26, 2005 at F. E.
Warren AFB, WY. Analysis was performed on the num-
ber of launch facilities chosen for the daily schedule,
the weighted maintenance sum of launch facilities se-
lected, and manpower utilization for both maintenance
and security.

4.1.1. Comparison of total launch facilities completed
When comparing only the number of LFs selected,

improvements in the schedule were realized by the
research model in only 8 of the 26 daily schedules,
with actual increases ranging from 0 to 3 additional
launch facilities. In one instance, the actual baseline
schedule completed one more launch facility than the
research model; however, in this instance, the research

model produced a higher weighted sum of maintenance
than the actual schedule. In fact, a significantly greater
weighted sum of maintenance was accomplished in
most of the days where the same number of LFs was
selected. Fig. 3 compares the historical number of
daily launch facilities completed to the research model
outputs.

4.1.2. Weighted-sum solution comparisons
In 18 of the 26 daily schedules analyzed, the re-

search model produced better weighted-sum solutions
than were provided by the actual schedule. Improve-
ments ranged from 2 percent to nearly 35 percent.
This represents a marked improvement over the current
scheduling method, which does not utilize structured
formulations. Fig. 4 compares the weighted mainte-
nance sums of the actual schedule and the research
model. Future model testing should also consider in-
creasing the weight of maintenance tasks which are
delayed in order to increase their priority.

4.1.3. Manpower utilization rate comparisons
Fig. 5 shows maintenance team utilization rates for

the actual schedule and the research model sched-
ule. Only small differences were noted in overall
maintenance team utilization rates; the baseline sched-
ule demonstrated an overall utilization rate of 71.48
percent, while the research model provided a 69.73
percent utilization rate. It was noted, however, that the
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Fig. 3. Completed launch facilities: actual vs. model.

research model utilized more of the facility maintenance
(FMT) and civilian periodic maintenance teams (CCT
and RVM), while the baseline schedule utilized more
electro-mechanical (EMT), training (TRN), and back
shop maintenance teams (PNEU, PMT and MMT).
The research model only showed slight improvements
in security personnel utilization, with an overall 94.11
percent utilization, while the actual schedule demon-
strated a 90.03 percent utilization rate.

4.2. Sensitivity analysis

Following initial analysis of the model outputs, each
of the 26 maintenance schedules was run multiple times
with different settings for the purposes of sensitivity
analysis.

4.2.1. Security response time sensitivity analysis
The first sensitivity analysis model set relaxes the se-

curity force response time constraint, R, varying it from
60 to 20min, in 10-min increments, to show the effects
on the total weighted sum of maintenance activities, the
number of launch facilities that are scheduled, and main-
tenance team/security personnel utilization. All other

parameters remain unchanged in this analysis to isolate
the effects of attenuated security patrol areas. From this
analysis, missile maintenance and security forces man-
agers can visualize how various response times will af-
fect the total maintenance effort. Table 1 summarizes
the impact of reduced response times on weighted sums
of scheduled maintenance activities.

The response time radius and weighted sums are pos-
itively correlated; the weighted-sum totals increase as
the security patrol area radius increases. By observing
the weighted-sum values in Table 1, the differences in
weighted sums from the 60- to 30-min response times
demonstrates that reducing the security patrol area size
has minimal impact on the type and quantity of main-
tenance activities performed. However, reducing the
security response times to 20min appears to have a
significant impact on the weighted sum of activities
that can be performed, with average weighted sums
decreasing by over 18 percent.

Only a slight decrease in average weighted sums is
observed between the first four increments, with a larger
total decrease of 84 points observed with the 20-min re-
sponse time. This large decrease at 20min is equivalent
to 1 high-priority maintenance activity or several low-
priority activities. The small decrease in weighted sums
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Research Model Weighted Sum Improvements
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Fig. 4. Model improvements over actual schedule.
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Table 1
Weighted sums vs. response times .

May Weighted sum vs. response time

60 50 40 30 20

1 540 506 497 497 460
2 673 657 621 615 578
3 753 753 651 553 434
4 367 340 319 298 276
5 358 306 306 306 269
6 686 686 686 670 622
7 75 75 75 75 43
8 27 27 27 27 27
9 1192 1181 1171 1021 942
10 200 200 200 200 200
11 224 213 224 224 171
12 234 218 218 218 187
13 99 99 99 88 99
14 59 59 59 59 43
15 82 82 82 82 77
16 874 874 863 842 763
17 248 248 248 242 216
18 268 268 234 234 234
19 1590 1590 1494 1494 1446
20 220 220 220 186 186
21 131 131 115 115 115
22 238 238 206 195 174
23 1325 1325 1309 1293 1251
24 165 165 154 132 85
25 495 495 495 458 400
26 797 797 797 797 426

Average 458 452 437 420 374
Avg decrease (%) 1.40 4.61 8.38 18.42

from the 60-min security patrol areas to the 30-min
security patrol areas is attributable to the small number
of maintenance activities available for the schedule, as
well as the maintenance schedulers’ abilities to tightly
cluster scheduled maintenance activities. With the 20-
min security patrol areas, it is apparent that due to the
geographic spacing of available jobs, the two security
patrol areas are only able to cover the closest, high-
priority maintenance activities. Extensive geographic
clustering efforts would be required to cover more
maintenance activities within these small security patrol
areas.

Fig. 6 illustrates the impact of manipulating security
response time constraints on the number of launch fa-
cilities scheduled daily.

The separation between the 60-, 50-, and 40-min
response times appear drastic in the first few days, but
then remain close through the remainder of the month.
The 30-min response time also tracks with the previous
three response times, but more significant decreases are

observed throughout the graph. The 20-min response
time obviously has the greatest impact, with large,
steady reductions in scheduled launch facilities ob-
served over the entire month of May. The 60-, 50-,
and 40-min response times all averaged six scheduled
launch facilities daily, while the 30- and 20-min re-
sponse times averaged five and four scheduled launch
facilities, respectively. Reducing the security response
time can drastically impact an organization’s ability to
perform maintenance. If maintenance activities within
the daily schedule are not geographically clustered, it
will be difficult to maximize maintenance efforts and
improve manpower utilization rates. Fig. 7 examines the
impact of reduced response times on personnel usage.

Reducing the response time from 60 to 30min ap-
pears to have a limited effect on personnel usage. How-
ever, the effects of the 20-min response time had more
drastic impacts on total maintenance team utilization,
with reductions ranging from 0 percent for the Battery
teams, to nearly 53 percent for corrosion control. The
overall average utilization rate decreased by 25.6 per-
cent for maintenance teams, while security forces per-
sonnel averaged a 14.57 percent reduction. In summary,
as the security patrol area response radius decreases,
daily schedules tend to utilize more maintenance
teams that work on the higher-priority maintenance
activities.

4.2.2. Impacts of adjusting security patrol area
constraints

The second sensitivity analysis examines how adjust-
ing the security patrol area quantity constraint affects the
weighted sums of daily scheduled maintenance, as well
as the number of scheduled launch facilities. The num-
ber of permitted security patrol areas within the model
is setup as a “less than, or equal to,” constraint, with
the maximum allowable security patrol areas establish-
ing the upper bound. The security patrol area quantity
constraint was varied between 1 and 5, in increments of
1, while solutions for all 26 daily schedules were com-
puted at each increment. For each security patrol area
quantity, the minimum response time required for each
daily schedule to reach the best-achieved model solu-
tion was recorded. Fig. 8 provides a breakdown of the
minimum response time required to achieve the optimal
weighted-sum solution for each daily schedule.

The first row of the table illustrates that with the
model security patrol area constraint set to five, 14
of the 26 daily schedules could achieve the best solu-
tion with a 30-min response time, while the remain-
ing 12 daily schedules only required a 20-min response
time to reach the best-achieved solution. In essence,
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Scheduled Launch Facilities vs. Response Time
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Umbrella Quantity/Response Time Combination Required for Best Achieved Solution
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with five security patrol areas in place, all 26 daily
schedules could achieve near-optimal solutions with a
30-min response time or less. As the security patrol
area constraint tightens, it appears that a negative cor-
relation exists between the number of security patrol
areas utilized and the minimum response time required
to achieve the best achieved solution. As the quantity
of security patrol areas decreases from five to one, the
minimum response times required for all 26 daily sched-
ules to achieve the best solution increases from 30 to
60min. With the model constraints set to one security
patrol area, only nine of the 26 daily schedules could
reach the best-achieved model solution; all other sched-
ule solutions were less than optimal. In one instance,
optimality could be achieved with one security patrol
area and a 20-min response time. This is because only
one launch facility was scheduled for that particular
day and it was in close proximity of the security patrol
area center. In two instances, optimality was achieved at
30min and one security patrol area. For these particular
dates, four or less launch facilities were tightly clus-
tered within 30min of the missile alert facility serving
as the security patrol area center. However, these were
isolated occurrences, as only nine of the 26 schedules

could even achieve optimality with one security patrol
area established.

During analysis, it was found that in the majority of
cases involving four or five security patrol areas, the
model did not fully utilize the number of security patrol
areas allotted. This was especially true when 50- and
60-min response times were established. As such, sen-
sitivity analysis demonstrates that utilizing more than
three security patrol areas centered upon missile alert
facilities would be wasting the additional security per-
sonnel required to support the unneeded security patrol
areas. However, as shown in Dawson [2], if other
locations in addition to missile alert facilities were con-
sidered, more than three security patrol areas could be
better utilized. In conclusion, it is evident that in all 26
cases, a combination of 60-min response radius and two
established security patrol areas are sufficient to maxi-
mize the weighted sum of available daily maintenance
activities. This parallels with the security patrol areas
concept of operations that were employed at F. E. War-
ren AFB during this study. However, utilizing the third
security patrol area would allow for a 50-min response
radius and still maximize the weighted sum of mainte-
nance activities performed.
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5. Conclusions

Research analysis indicates that the two-stage re-
search model does provide solutions that are as good,
or better, than actual schedules produced during May
1–26, 2005 at F. E. Warren AFB. This research has
demonstrated that the manual scheduling methods be-
ing used at F. E. Warren AFB can be enhanced through
the use of optimization techniques. The time required
to develop daily schedules can be reduced, while the
energy invested in making schedule changes can be
alleviated. The research model is able to select the two
security patrol areas that best utilize all available main-
tenance teams and security personnel, given the resource
and security constraints. From this set of missile alert
facilities, the model is then able to produce feasible so-
lutions that geographically cluster maintenance activ-
ities and maximize the weighted sum of maintenance
activities performed. In summary, the model produced
in this research can be an effective tool for maintenance
schedulers to supplement current scheduling processes.

The number of launch facilities selected by the re-
search model was highly dependent on the random ge-
ographic clustering of required maintenance activities.
Daily schedules that had more tightly clustered, higher-
priority maintenance activities available, generally had
more launch facilities selected by the model. As was
observed with the weighted-sums analysis, the weights
assigned to maintenance categories greatly impacted the
type and number of launch facilities scheduled. Reduc-
ing the weights assigned to the higher-priority main-
tenance activities could increase the total number of
launch facilities scheduled, but at the expense of hav-
ing several tightly clustered, low-priority maintenance
activities bumping an important maintenance require-
ment, such as an off-alert launch facility, from the final
schedule.

The first sensitivity analysis monitored the effects of
decreased security response times on the weighted sum
of maintenance activities scheduled, number of launch
facilities scheduled, and manpower utilization rates. As
was expected, smaller security patrol areas resulted in a
decrease in the final weighted-sum value of maintenance
performed. The weighted sum decrease was less pro-
found in the 30–60-min security patrol area models, but
more severe in the 20-min model. The small weighted-
sum differences observed between the 30-min and
the 60-min models is attributable to the large weights
assigned to the high-priority maintenance categories.
As security patrol area response times decreased,
security patrol area centers shifted to the missile
alert facilities that covered those areas containing the

high-priority maintenance activities. At each 10-min
decrement, maintenance activities with small weights,
such as periodic maintenance and training, were grad-
ually removed from the schedule. With the 20-min
security patrol area model, only the highest-priority
launch facilities were selected.

In the second round of sensitivity analysis, the
number of available security patrol areas was adjusted
between one and five. As with the first sensitivity anal-
ysis, response times were also adjusted between 20 and
60min in 10-min increments. It was found that as the
number of available security patrol areas increased, the
best achieved weighted-sum solution could be realized
with a shorter response time. Final results suggested
that two, 60-min security patrol areas were sufficient to
maximize the weighted-sum solution for all 26 sched-
ules, given current security and maintenance team
availability. Additional security patrol areas could be
created if security forces personnel were to abandon
the deployment philosophy that assigns more than one
fire team per security patrol area. Otherwise, major in-
creases in security forces manpower would be required
to create additional security patrol areas.

For the US Air Force, this model has provided the
basic formulations and framework from which expand
into an all-encompassing user-friendly scheduling solu-
tion. The techniques discussed in this paper have been
presented to Air Force Space Command and 20th Air
Force Logistics Divisions for potential application in
future missile maintenance scheduling software devel-
opment and acquisition. In addition, this research is be-
lieved to fill an important niche in the literature as the
first application of location analysis techniques to a ge-
ographically dispersed scheduling problem for field ser-
vice (maintenance) technicians.

Disclaimer

The views expressed are those of the authors and
do not represent the official policy or positions of the
United States Air Force, Department of Defence, or the
U.S. Government.

Appendix A. Explanation of 18 weighted mainte-
nance categories

1. Limited life component/reentry system (LLC/RS):
Requires an enormous amount of coordination be-
tween organizations; requires additional security
and has considerable mission impact.

2. Priority maintenance letter (PML) off-alert: Criti-
cal to accomplishing the published mission, often
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requires additional security, and entails a large
amount of coordination.

3. Off-alert: Critical to accomplishing the published
objective, often requires additional security person-
nel, and entails a large amount of coordination.

4. Priority 1: Usually does not require the amount of
coordination and security that the previous cate-
gories require.

5. Concrete headworks: Accomplishment of these
programs are critical to achieve security require-
ments outlined in instruction DoD S-5210.41-M;
will directly impact ability to accomplish missile
maintenance activities in the near future.

6. Propulsion replacement program (PRP): Includes
maintenance activities that do not fall into previous
category; requires some coordination, but not as
much security.

7. Non-mission capable missile alert facility (NMC
MAF): Priority varies depending on the number of
other MAFs available; security may be required,
depending on task.

8. Launch facility security check out (LF Security
C/O): Requires additional security to maintain
LF control until discrepancy is eliminated; can
impact the number of security force personnel
available to maintenance teams in successive daily
schedules.

9. Time sensitive (TS) priority 3: Security escort re-
quirements can vary, depending on level of LF ac-
cess required.

10. Corrosion control (CCT): Periodic corrosion main-
tenance activities; number of security personnel re-
quired is dependent on LF access and components.

11. Periodic maintenance team (PMT): Periodic main-
tenance activities; number of security personnel
required is dependent on level of LF access and
components.

12. Rivet mile (RVM): Lower priority periodic main-
tenance activities; number of security personnel
required is dependent on level of LF access and
components.

13. PRP open hole: Periodic maintenance activities;
requires coordination with some organizations to
begin; limited timeframe for completion without
further coordination.

14. Priority 2–3: Maintenance activities that do not fall
into previous categories; may require presence of
security depending on level of LF access.

15. Batteries: Utilizes special electro-mechanical team
(EMT) to complete; requires security presence.

16. Training: Can be used to completemission essential
tasks.

17. Priority 4–7: Maintenance tasks that do not fall into
previous categories; usually not practical to com-
plete when security is required; often completed
in conjunction with higher priority maintenance
activities; minimal impact to published mission.

18. Miscellaneous missile alert facility (Misc. MAF):
Low-priority tasks that generally do not require
presence of security personnel; any tasks at a MAF
not falling within a higher category; generally have
little to no direct impact on the published mission.
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